NOTE

$Li_x VO_2$ (0 < x \leq 1): A New Series of Layered Oxides^{*}

Introduction

Solid solutions based on layered transition metal chalcogenides such as Li_xTiS₂ have attracted considerable attention in view of their potential use as electrodes in secondary batteries (1). The importance of such systems is that the electropositive metal can be reversibly inserted into and extracted from the lavered chalcogenide with minimum structural change (2). Recently Mizushima et al. (3) have shown that it is possible to remove lithium electrochemically from LiCoO₂ forming the Li_r CoO_2 series. We report here the formation of $\text{Li}_x \text{VO}_2$ (0 < $x \le 1$) by chemical oxidation of LiVO₂ using Br₂ as the oxidant in CHCl₃.

Experimental

LiVO₂ was prepared by heating Li₂CO₃ and V₂O₅ in a 1:1 molar ratio in hydrogen atmosphere, first at 500°C for 4 hr, and then at 700°C for 10 hr. Chemical analysis of the sample carried out potentiometrically using Ce(IV) as oxidant (4) showed that the total vanadium content is 56.2% (calcd. for LiVO₂ is 56.67%) and the average oxidation state of vanadium is 3.02. An X-ray powder diffraction pattern of the sample (Fig. 1a) recorded using Ni-filtered CuK_a radiation could be indexed on a hexagonal cell with a = 2.84 and c = 14.79 Å. The values of a and c reported for LiVO₂ in the literature (5) are 2.85 and 14.70 Å, respectively. We carried out preliminary experiments of oxidation of $LiVO_2$ using I_2 and Br_2 in CH_3CN medium, since the former is known to oxidize $LiVS_2$ to VS_2 (6). These experiments showed that, while there was no oxidation with I_2 , Br_2 in CH_3CN did oxidize $LiVO_2$ to Li_xVO_2 . However, there was considerable dissolution of the product as indicated by the green color of the solution. We found that the oxidation by Br_2 can be carried out neatly in $CHCl_3$ medium.

The following method was used for the preparation of $Li_x VO_2$ with different values of x. Known amounts of $LiVO_2$ (about 2 g), taken in stoppered bottles, were mixed with the required volumes of $0.05 \ N \ Br_2$ in CHCl₃ to give $Li_x VO_2$ with x = 0.75, 0.50, 0.25, and 0.00. The bottles were kept in the dark with periodical stirring. The reactions vielding Li_{0.75}VO₂ and Li_{0.5}VO₂ were complete in 1 and 3 days, respectively (as indicated by the disappearance of bromine color). Products with smaller values of xrequired prolonged reaction. After the reaction, the solid products were filtered off, washed with CH₃CN (to remove LiBr), and vacuum-dried. Total vanadium content and its oxidation state in the samples were determined as before.

Results and Discussion

Chemical analysis of $\text{Li}_x \text{VO}_2$ (Table I) shows that delithiation of LiVO_2 occurs as expected, resulting in an increase of the oxidation state of vanadium. For preparations of $\text{Li}_x \text{VO}_2$ with x = 0.75 and 0.50, the oxidation state of vanadium is slightly more

^{*}Communication No. 152 from the Solid State and Structural Chemistry Unit.

FIG. 1. X-Ray powder diffraction patterns of (a) $LiVO_2$, (b) $Li_{\sim 0.1}VO_2$, and (c) monoclinic VO_2 .

than expected; with x = 0, the reaction is incomplete even after 20 days, and the composition of the product is $\text{Li}_{\sim 0.1}\text{VO}_2$.

The X-ray powder diffraction patterns (Fig. 1) of $\text{Li}_x \text{VO}_2$ for different values of x are similar to LiVO_2 and could be indexed on the hexagonal cell (Table I). This reveals that the delithiation

$$\text{LiVO}_2 + (1 - x)/2 \text{ Br}_2 \rightarrow$$

 $\text{Li}_x \text{VO}_2 + (1 - x) \text{ LiB}_2$

occurs topochemically, retaining the parent structure of $LiVO_2$. With decreasing value of x in Li_xVO_2 , there is a marked decrease in the c axis, while the a axis increases slightly. Moreover, as delithiation proceeds, the diffraction patterns become poorer, showing the disappearance of weak lines. In addition, the intensity of the (003) line steadily decreases with decreasing lithium content.

Complete removal of lithium from $LiVO_2$ would result in a new modification of VO_2 having the $CdCl_2$ structure. We prepared a sample of VO_2 by treating $LiVO_2$ with excess Br_2 in CHCl₃ for 14 days. Chemical analysis indicated that the oxidation state of vanadium in this sample is close to 4+. This sample, is, however, found to be X-ray

TABLE I									
CHEMICAL	Analysis	AND	LATTICE	PARAMETERS	OF	Li _r VO ₂			

Composition expected	Total	Oxidation	Composition obtained	Lattice parameter (Å)	
	vanadium (%)	state of vanadium		a	с
LiVO ₂	56.2	3.02	LiVO ₂	2.84	14.79
Li _{0.75} VO ₂	55.6	3.35	$Li_{0.65}VO_2$	2.84	14.80
$Li_{0.5}VO_2$	57.8	3.55	$Li_{0.45}VO_2$	2.86	14.54
$Li_{0.25}VO_2$	58.2	3.75	$Li_{0.25}VO_2$	2.89	14.31
VO_2	56.0	3.90	$Li_{\sim 0.1}VO_2$	2.89	14.24

amorphous and, on heating in an evacuated tube at 450°C for 4 days, transforms to monoclinic VO₂ (Fig. 1c).

Acknowledgment

Grateful thanks are due to Professor C. N. R. Rao for his keen interest and encouragement.

References

- B. C. TOFIELD, R. M. DELL, AND J. JENSEN, Nature (London) 276, 217 (1978); D. W. MURPHY AND P. A. CHRISTIAN, Science 205, 651 (1979).
- 2. M. S. WHITTINGHAM, Prog. Solid State Chem. 12, 1 (1978).

- 3. K. MIZUSHIMA, P. C. JONES, P. J. WISEMAN, AND J. B. GOODENOUGH, *Mater. Res. Bull.* 15, 783 (1980).
- P. G. DICKENS, S. J. FRENCH, A. T. HIGHT, AND M. F. PYE, Mater. Res. Bull. 14, 1295 (1979).
- 5. W. RÜDORFF AND H. BECKER, Z. Naturforsch. 9, 614 (1954).
- 6. D. W. MURPHY, C. CROS, F. J. DISALVO, AND J. V. WASZEZAK, *Inorg. Chem.* 16, 3027 (1977).

K. VIDYASAGAR J. Gopalakrishnan

Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560012, India

Received November 16, 1981